LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

1

LA-UR- 89-1402

Received by OSTI

MAY 0 9 1989

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

LA-UR--89-1402

DE89 011170

TITLE 'QUIVALENT-SPHERICAL-SHIELD NEUTRON DOSE CALCULATIONS

AUTHOR(s): Gary J. Russell and Harold Robinson, LANSCE

SUBMITTED TO: Contributed Paper to be published in proceedings of ICANS-X. October 3-7, 1988, Los Alamos, NM

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark. manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposess.

The Lon Alamon National Laboratery requests the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

MASTER

Equivalent-spherical-shield neutron dose calculations

G. J. Russell and H. Robinson
Los Alamos Neutron Scattering Center
Los Alamos, New Mexico 87545 U.S.A.

ABSTRACT: Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of ~600 mrem/h. The calculated fraction of the high-energy (> 20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons.

Introduction

Shielding issues were the highest priority concerns at the Los Alamos Neutron Scattering Center (LANSCE)¹ in FY-88. LANSCE uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility (LAMPF)² to produce neutrons for basic materials science and nuclear physics research. As can be seen in Fig. 1, the LANSCE target area has vertical proton insertion. LANSCE shielding concerns include: a) proton beam line shielding, b) target shielding, and c) neutron beam line, chopper, and beam stop shielding. We launched both a computational endeavor³ and an experimental effort⁴ to better understand the complexities associated with adequately shielding a spallation neutron source.

Neutron dose measurement were made⁵ in the LANSCE experimental area below the proton beam line at a location downstream from where protons are extracted to the White Source experimental area (see Fig. 1). The 800-MeV proton beam impinged on a 50-cm-diam by 200 cm-long graphite beam stop. The proton current was 100 nA.

The shield under study was the reinforced regular concrete floor (152 cm thick) of the proton beam line. Our previous experience had shown that the maximum dose (for this type of geometry) should be expected at about 60 degrees from the proton beam direction. Measurements were made at roughly 70 degrees (see Fig. 2).

The actual shield geometry was simplified for the calculations by assuming an equivalent-spherical-shield with a thickness of the 70 degree slant distance (162 cm) through the beam channel floor. The high-energy (> 20 MeV) neutron source term was chosen to be an isotropic point source located at the center of the spherical shield

cavity. The graphite beam stop per se was not mocked up in the Mionte Carlo shielding calculations. The strength of the point source was taken to be 4π times the neutrons per steradian in the angle bin 50-105 degrees leaking from the graphite beam stop (see Fig. 2).

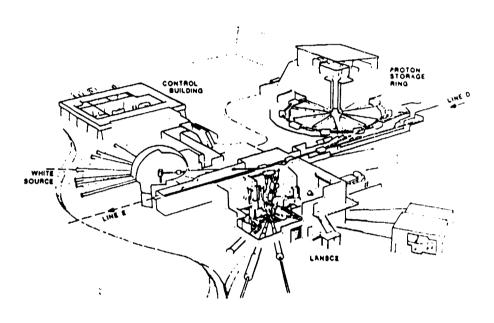


Fig. 1 General Layout of the LANSCE/WNR complex. The Neutron Scattering Experimental Hall, completed in 1988, surrounds the present LANSCE experimental hall (shown int he foreground) and greatly enhances the overall LANSCE experimental area.

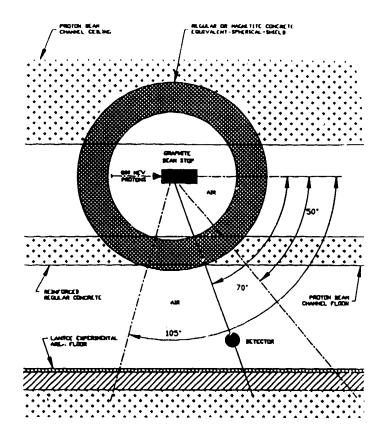


Fig. 2 A simplified schematic diagram of the LANSCE proton beam channel, showing the equivalent-spherical-shield for the beam channel floor. The location of the measurement, relative to the proton beam stop, is also illustrated. The graphite beam stop was replaced by a point isotropic source in the calculations.

Primary low-energy (< 20 MeV) neutrons produced in the graphite beam stop were ignored in the calculations. The high-energy neutrons and secondary low-energy neutron produced by high-energy reactions in the shield were tracked to the detector location and converted to dose. The floor of the LANSCE experimental area was ignored in the computations. Air-filled regions were assumed to be both inside and outside the shield zone.

The computations were done with the Los Alamos Monte Carlo code package.6

Results

The LANSCE beam channel floor in the vicinity of the shield measurement is reinforced regular concrete. Since we did not know the iron content of this shield, we performed computations for both regular and magnetite concrete, hoping to bracket the effectiveness of the actual shield material. The results of the calculations, compared to experimental data, are shown in Table I. Indeed, the experimental results are bracketed by our calculations. The magnetite concrete data is closer to the measured values, indicating the significance of the iron reinforcing bars used in the actual construction of the beam channel floor. The effect of including the LANSCE experimental area floor in the computations would produce some low-energy albedo neutrons to add to the low-energy dose component at the detector location.

Table I. Neutron Dose Through Various Shields for 100 nA of 800 MeV Protons on a Graphite Beam Stop

Shield	mrem/hr		
	Hi-E E>20 McV	Lo-E E<20 MeV	Total E<800 MeV
Magnetite Concrete (calc)	289	159	448
Reinforced Regular Concrete	(exp)*		500.700
Regular Concrete (calc)	753	337	1090
	Dose E > 10 MeV		
Magnetite Concrete (calc)		69.4%	
Reinforced Regular Concrete (exp)*		70.0%	
Regular Concrete (calc)		74.0%	

Conclusions

Equivalent-spherical-shield calculations of a relatively complex proton-beam-stop/proton-beam-line shielding scenario yield results which agree with measured values. This lends confidence to employing simplified shield approximations to geometrically complicated problems.

Acknowledgements

We appreciate useful discussions with Bill Wilson and Gail Legate, and for the continued support of Roger Pynn and Dick Woods for this work. We thank Teri Cordova for her typing help.

This work was performed under the auspices of the U. S. Department of Energy, Office of Basic Energy Sciences.

References

- 1. G. J. Russell, et al., "The LANSCE Target System", ICANS-IX Proceedings of the 9th Meeting of the international Collaboration on Advanced Neutron Sources, Villigen, Switzerland, September 22-26, 1986, ISBN 3-907998-01-4, pp. 177-244 (April 1987).
- 2. M. S. Livingston, "LAMPF, A Nuclear Research Facility", Los Alamos National Laboratory Report, LA-6878-MS (1977).
- 3. G. J. Russell, "Shielding Concerns at a Spallation Source", these proceedings.
- 4. G. L. Legate, R. L. Mundis, and M. L. Howe, these proceedings
- 5. M. L. Howe and R. L. Mundis, "Neutron Spectrum Measurement, LANSCE/ER-1".
- 6. R. E. Prael, "High-Energy Particle Monte Carlo at Los Alamos", In Monte Carlo Methods and Applications in Neutronics, Photonics, and Statistical Physics, eds., R. Alcouffe, R. Dautray, A. Forster, G. Ledanois, and B. Mercier, Springr-Verlag Publisher, Berlin/Heidelberg, 1985, pp. 196-206.